Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Genet Genomics ; 298(2): 361-374, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36575347

RESUMO

Rumen inhabiting Bacillus species possesses a high genetic potential for plant biomass hydrolysis and conversion to value-added products. In view of the same, five camel rumen-derived Bacillus strains, namely B. subtilis CRN 1, B. velezensis CRN 2, B. subtilis CRN 7, B. subtilis CRN 11, and B. velezensis CRN 23 were initially assayed for diverse hydrolytic activities, followed by genome mining to unravel the potential applications. CRN 1 and CRN 7 showed the highest endoglucanase activity with 0.4 U/ml, while CRN 23 showed high ß-xylosidase activity of 0.36 U/ml. The comprehensive genomic insights of strains resolve taxonomic identity, clusters of an orthologous gene, pan-genome dynamics, and metabolic features. Annotation of Carbohydrate active enzymes (CAZymes) reveals the presence of diverse glycoside hydrolases (GH) GH1, GH5, GH43, and GH30, which are solely responsible for the effective breakdown of complex bonds in plant polysaccharides. Further, protein modeling and ligand docking of annotated endoglucanases showed an affinity for cellotrioside, cellobioside, and ß-glucoside. The finding indicates the flexibility of Bacillus-derived endoglucanase activity on diverse cellulosic substrates. The presence of the butyrate synthesis gene in the CRN 1 strain depicts its key role in the production of important short-chain fatty acids essential for healthy rumen development. Similarly, antimicrobial peptides such as bacilysin and non-ribosomal peptides (NRPS) synthesized by the Bacillus strains were also annotated in the genome. The findings clearly define the role of Bacillus sp. inside the camel rumen and its potential application in various plant biomass utilizing industry and animal health research sectors.


Assuntos
Bacillus , Celulase , Animais , Bacillus subtilis/genética , Camelus , Hidrólise , Rúmen , Biomassa , Celulase/metabolismo , Bacillus/genética
2.
Protein Expr Purif ; 187: 105941, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34273540

RESUMO

Bacterial esterases are gaining the importance in pharmaceuticals and agrochemical industries due to their excellent biocatalytic properties and a wide range of applications. In the present study, a novel gene encoding an esterase (designated as Est-CR) was identified from shotgun metagenomic sequencing data of camel rumen (Camelus dromedarius) liquor. The open reading frame consisted of 1,224bp, which showed 84.03% sequence identity to Bacteroidales bacterium, corresponding to a protein of 407 amino acids and has a catalytic domain belonging to an esterase. Est-CR belonged to family V with GLSMG domain. The purified enzyme with a molecular mass of 62.64 kDa was checked on SDS-PAGE, and its expression was confirmed by western blotting. The enzyme was active and stable over a broad range of temperature (35-65 °C), displayed the maximum activity at 50 °C and pH 7.0. Individually all metal ions inhibited the enzyme activity, while in combination, K2+, Ca2+, Mg2+ and Mn2+ metal ions enhanced the enzyme activity. The detergents strongly inhibited the activity, while EDTA (10 mM) increased the activity of the Est-CR enzyme. The enzyme showed specificity to short-chain substrates and displayed an optimum activity against butyrate ester. This novel enzyme might serve as a promising candidate to meet some harsh industrial processes enzymatic needs.


Assuntos
Cátions/química , Esterases/química , Metagenoma/genética , Metais/química , Sequência de Aminoácidos , Animais , Bacteroides/genética , Camelus , Domínio Catalítico , Ativação Enzimática , Estabilidade Enzimática , Escherichia coli/genética , Esterases/genética , Esterases/metabolismo , Concentração de Íons de Hidrogênio , Ligação Proteica , Rúmen , Especificidade por Substrato , Temperatura
3.
Sci Rep ; 11(1): 9400, 2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33931716

RESUMO

In dromedary camels, which are pseudo-ruminants, rumen or C1 section of stomach is the main compartment involved in fiber degradation, as in true ruminants. However, as camels are adapted to the harsh and scarce grazing conditions of desert, their ruminal microbiota makes an interesting target of study. The present study was undertaken to generate the rumen microbial profile of Indian camel using 16S rRNA amplicon and shotgun metagenomics. The camels were fed three diets differing in the source of roughage. The comparative metagenomic analysis revealed greater proportions of significant differences between two fractions of rumen content followed by diet associated differences. Significant differences were also observed in the rumen microbiota collected at different time-points of the feeding trial. However, fraction related differences were more highlighted as compared to diet dependent changes in microbial profile from shotgun metagenomics data. Further, 16 genera were identified as part of the core rumen microbiome of Indian camels. Moreover, glycoside hydrolases were observed to be the most abundant among all Carbohydrate-Active enzymes and were dominated by GH2, GH3, GH13 and GH43. In all, this study describes the camel rumen microbiota under different dietary conditions with focus on taxonomic, functional, and Carbohydrate-Active enzymes profiles.


Assuntos
Camelus/microbiologia , Metabolismo dos Carboidratos , Dieta , Enzimas/metabolismo , Microbiota , Rúmen/microbiologia , Animais , Proteínas de Bactérias/metabolismo
4.
Arch Microbiol ; 203(1): 107-123, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32772117

RESUMO

Cellulose is the most abundant natural polymer present on Earth in the form of agriculture waste. Hydrolysis of agriculture waste for simple fermentable reducing sugars is the bottleneck in the area of biofuel generation and other value-added products. The present study aims to utilize the camel rumen as a bioreactor for potent cellulolytic and hemicellulolytic bacteria by altering the feed types with varying cellulosic concentrations. A total of 6716 bacterial cultures were subjected to three layers of screening, where plate zymography and chromophoric substrate screening served as primary screening method for cellulolytic and hemicellulolytic potential. The potential isolates were genetically grouped using RAPD, and 51 representative isolates from each group were subjected to molecular identification through 16S rDNA sequencing, followed by quantification of various cellulolytic and hemicellulolytic enzymes. Out of 51 potent isolates, 5 isolates had high endoglucanase activity ranging from 0.3 to 0.48 U/ml. The selected five key isolates identified as Pseudomonas, Paenibacillus, Citrobacter, Bacillus subtilis, and Enterobacter were employed for hydrolyzing the various agriculture residues and resulted in approximately 0.4 mg/ml of reducing sugar. Furthermore, the metaculturomics approach was implemented to deduce the total cultured diversity through 16S rRNA amplicon library sequencing. The metaculturomics data revealed the dominance of proteobacteria and unidentified bacterial population in all four feed types, which indicates the possibility of culturing novel cellulose-deconstructing bacteria. Moreover, the presence of diverse hydrolytic enzymes in cultured isolates supports the usage of these bacteria in bio-processing of agriculture waste residues and obtaining the biofuels and other value-added products.


Assuntos
Agricultura , Bactérias , Biocombustíveis , Camelus/microbiologia , Microbiota , Rúmen/microbiologia , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Biocombustíveis/microbiologia , Celulase/metabolismo , Celulose/metabolismo , Hidrólise , RNA Ribossômico 16S/genética , Técnica de Amplificação ao Acaso de DNA Polimórfico
5.
Arch Microbiol ; 202(7): 1861-1872, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32448959

RESUMO

In addition to a wide variety of anaerobic and facultative anaerobic bacteria, camel rumen also harbors a diverse of eukaryotic organisms. In the present study, the eukaryotic communities of camel rumen were characterized using 18S rRNA amplicon sequencing. Metagenomic DNA was isolated from rumen samples of fourteen adult Bikaneri and Kachchhi breeds of camel fed different diets containing Jowar, Bajra, Maize, and Guar. Illumina sequencing generated 27,161,904 number of reads corresponding to 1543 total operational taxonomic units (OTUs). Taxonomic classification of community metagenome sequences from all the samples revealed the presence of 92 genera belonging to 16 different divisions, out of which Ciliophora (73%), Fungi (13%) and Streptophyta (9%) were found to be the most dominant. Notably, the abundance of Ciliophora was significantly higher in the case of Guar feed, while Fungi was significantly higher in the case of Maize feed, indicating the influence of cellulose and hemicellulose content of feedstuff on the composition of eukaryotes. The results suggest that the camel rumen eukaryotes are highly dynamic and depend on the type of diet given to the animal. Pearson's correlation analysis suggested the ciliate protozoa and fungi were negatively correlated with each other. To the best of our knowledge, this is first systematic study to characterize camel rumen eukaryotes, which has provided newer information regarding eukaryotic diversity patterns amongst camel fed on different diets.


Assuntos
Camelus/microbiologia , Camelus/parasitologia , Cilióforos , Dieta , Fungos , Rúmen/microbiologia , Rúmen/parasitologia , Animais , Cilióforos/classificação , Cilióforos/genética , Fungos/classificação , Fungos/genética , Sequenciamento de Nucleotídeos em Larga Escala , Metagenoma , RNA Ribossômico 18S/genética , Análise de Sequência de DNA
6.
Anim Biotechnol ; 30(1): 57-62, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29527970

RESUMO

Foot-and-mouth disease (FMD) is an acute, highly contagious, and economically devastating viral disease of domestic and wildlife species. For effective implementation of FMD control program, there is an imperative need for developing a rapid, sensitive, and specific diagnostics which help in the identification of serotypes involved in the outbreaks. The humoral immune response of the Camelidae is unique since in these animals 75% of circulating antibodies are constituted by heavy-chain antibodies and 25% are conventional immunoglobulin with two identical heavy chains. In the present study, we developed and characterized FMD virus-specific single-domain heavy-chain antibodies (VHHs) against inactivated whole-virus antigens of FMDV serotypes O (INDR2/1975), A (IND40/2000), and Asia 1 (IND63/1972) vaccine strains. After six rounds of panning and enrichment, these VHHs were stably expressed in Escherichia coli cells. The VHHs directed against outer capsid proteins of FMD virus were successfully utilized as the capture antibody in liquid-phase blocking ELISA (LPBE) thus replacing rabbit coating antibodies. Our study demonstrated the utility of FMD virus-specific VHHs as potential candidates in FMD research and diagnostic application.


Assuntos
Anticorpos Antivirais/imunologia , Especificidade de Anticorpos , Camelus/imunologia , Vírus da Febre Aftosa/imunologia , Febre Aftosa/diagnóstico , Anticorpos de Domínio Único/imunologia , Animais , Proteínas do Capsídeo/imunologia , Ensaio de Imunoadsorção Enzimática/veterinária , Escherichia coli/genética , Escherichia coli/metabolismo , Febre Aftosa/virologia , Masculino , Especificidade da Espécie
7.
Anim Nutr ; 1(4): 356-361, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29767066

RESUMO

The utilization of urea in camels has beneficial and negative effects. The aims of this study were to investigate the effects of different levels of urea supplementation on nutrients intake, digestibility, growth performance, feed efficiency and economics in growing camels fed roughage based complete pellet diets. In the present study, eighteen growing camels with an average live body weight of 306.17 ± 2.05 kg were randomly assigned in three treatments: T1 = roughage complete pellet diet without urea, T2 = T1 plus 1% urea, and T3 = T1 plus 2% urea. The results showed that the urea supplementation significantly affected average daily feed and nutrient intake of dry matter (DM), organic matter (OM), crude protein (CP), neutral detergent fiber (NDF), and acid detergent fiber (ADF) (P < 0.05). On the contrary, the average daily intake of nitrogen free extract (NFE) and water were not influenced by increasing urea supplementation (P > 0.05). Similarly, digestion coefficient of DM, CP, ether extract (EE), crude fiber (CF) and ADF was influenced by increasing urea level (P < 0.05), while the digestion coefficient of OM, NFE and NDF was not affected by increasing urea level (P > 0.05). The intake of digestive nutrients was similar among all treatment groups. Total body live weight gain and average daily gain were significantly higher in urea supplemented groups (P < 0.05) than in the control group. The supplementation of urea at 1% in low quality roughage complete pellet diets significantly improved (P < 0.05) the feed efficiency. In conclusion, these results indicated that the incorporation of urea at 1% in roughage based complete pellet diets could positively improve nutrients intake, digestibility, growth performance and feed conversion efficiency of growing camels.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...